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Homework 10.1 (Riemann sphere). The goal of this exercise is to introduce calculus “at
infinity”. We set Ĉ := C ∪ {∞}, where for the moment ∞ is an abstract element. We say
a sequence (𝑧𝑛)𝑛∈N in Ĉ converges to a point 𝑧 ∈ Ĉ if for every 𝜀 > 0 there exists 𝑛0 ∈ N
such that for all 𝑛 ≥ 𝑛0 we have

• 𝑧𝑛 = ∞ or 𝑧𝑛 ∈ C yet |𝑧𝑛 | ≥ 1/𝜀 provided 𝑧 = ∞ and
• 𝑧𝑛 ∈ C and |𝑧𝑛 − 𝑧 | ≤ 𝜀 provided 𝑧 ∈ C.

Moreover, let S2 := {𝑥 ∈ R3 : 𝑥2
1 + 𝑥2

2 + 𝑥2
3 = 1} be the usual two-dimensional unit sphere

and define the stereographic projection 𝑃 : S2 → Ĉ through

𝑃(𝑥) :=


𝑥1
1 − 𝑥3

+ i
𝑥2

1 − 𝑥3
if 𝑥3 ≠ 1,

∞ otherwise.

a. Show 𝑃 is a homeomorphism (where continuity is tacitly understood as sequential
continuity).

b. Conclude Ĉ is sequentially compact.

Solution. a. We first show injectivity. Assume 𝑃(𝑥) = 𝑃(𝑦) for two given points 𝑥, 𝑦 ∈ S2,
then either 𝑃(𝑥) = ∞ so that 𝑥 = 𝑦 = (0, 0, 1) or

𝑥1
1 − 𝑥3

=
𝑦1

1 − 𝑦3
,

𝑥2
1 − 𝑥3

=
𝑦2

1 − 𝑦3
.

Squaring both equalities, their sum yields
1 − 𝑥2

3
(1 − 𝑥3)2 =

𝑥2
1 + 𝑥2

2
(1 − 𝑥3)2 =

𝑦2
1 + 𝑦2

2
(1 − 𝑦3)2 =

1 − 𝑦2
3

(1 − 𝑦2
3)
,

where we used 𝑥2
1 + 𝑥2

2 + 𝑥2
3 = 1 and 𝑦2

1 + 𝑦2
2 + 𝑦2

3 = 1. We can further simplify the terms on
both sides to deduce

1 + 𝑥3
1 − 𝑥3

=
1 + 𝑦3
1 − 𝑦3

.

Note the assignment 𝑡 ↦→ (1 + 𝑡) (1 − 𝑡)−1 is strictly increasing on (0, 1). Hence, the above
equality yields 𝑥3 = 𝑦3 and we conclude 𝑥 = 𝑦.

We turn to surjectivity. It clearly suffices to find, given any 𝑧 ∈ C, a point 𝑥 ∈ S2 with
𝑃(𝑥) = 𝑧. Since |𝑃(𝑥) |2 = (1 + 𝑥3) (1 − 𝑥3)−1 we set 𝑥3 = ( |𝑧 |2 − 1) (1 + |𝑧 |2)−1, so that
|𝑥3 | < 1. In conclusion we let

𝑥1 = ℜ𝑧

[
1 − |𝑧 |2 − 1

1 + |𝑧 |2
]
= ℜ𝑧

2
1 + |𝑧 |2

,

𝑥2 = ℑ𝑧
[
1 − |𝑧 |2 − 1

1 + |𝑧 |2
]
= ℑ𝑧 2

1 + |𝑧 |2
,

By a direct calculation, we find 𝑥2
1 + 𝑥2

2 + 𝑥2
3 = 1 and 𝑃(𝑥) = 𝑧.
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In particular, the inverse of 𝑃 is given by

𝑃−1 (𝑧) =


1
1 + |𝑧 |2

(2ℜ𝑧, 2ℑ𝑧, |𝑧 |2 − 1) if 𝑧 ∈ C,

(0, 0, 1) if 𝑧 = ∞.

We next show 𝑃 and 𝑃−1 are sequentially continuous. Let (𝑥𝑛)𝑛∈N be a sequence in
S2 converging to some 𝑥 ∈ S2. If 𝑥 ≠ (0, 0, 1) then clearly 𝑃(𝑥𝑛) → 𝑃(𝑥) as 𝑛 → ∞. If
𝑥 = (0, 0, 1), we may and will assume without loss of generality that 𝑥𝑛 ≠ 𝑥 for every 𝑛 ∈ N.
Then |𝑃(𝑥𝑛) | → ∞ as 𝑛 → ∞, which shows 𝑃(𝑥𝑛) → ∞ as 𝑛 → ∞. Thus 𝑃 is continuous.
Conversely, let us assume (𝑧𝑛)𝑛∈N is a sequence in Ĉ converging to a point 𝑧 ∈ Ĉ. If 𝑧 ∈ C
then again 𝑃−1 (𝑧𝑛) → 𝑃−1 (𝑧) as 𝑛 → ∞. If 𝑧 = ∞ we may and will again assume 𝑧𝑛 ≠ ∞
for every 𝑛 ∈ N. Then by definition |𝑧𝑛 | → ∞ as 𝑛 → ∞, which entails 𝑃−1 (𝑧𝑛) = (0, 0, 1)
thanks to the inequality |ℜ𝑧 |, |ℑ𝑧 | ≤ |𝑧 | for every 𝑧 ∈ C.

b. In order to show sequential compactness, it suffices to note Ĉ is the image of the
sequentially compact set S2 under the continuous function 𝑃.

Homework 10.2 (Open mapping theorem for the Riemann sphere). Let 𝐷 ⊂ Ĉ be a domain
and let 𝑓 : 𝐷 → Ĉ be holomorphic and nonconstant. Show 𝑓 (𝐷) is again a domain.

Solution. Since 𝑓 is continuous it follows 𝑓 (𝐷) is again a path-connected set. We claim it
is an open set. Given 𝑤 ∈ 𝑓 (𝐷), to find a neighborhood we distinguish several cases.

If 𝑤 ∈ C and there exists 𝑧 ∈ 𝐷 \ {∞} with 𝑓 (𝑧) = 𝑤 then by continuity there exists
𝑟 > 0 such that 𝐵𝑟 (𝑧) ⊂ 𝐷 and 𝑓 (𝐵𝑟 (𝑧)) ∈ C. By the identity theorem it follows that 𝑓 is
nonconstant on 𝐵𝑟 (𝑧). Hence by the standard open mapping theorem there exists 𝜀 > 0
such that 𝐵𝜀 (𝑤) ⊂ 𝑓 (𝐵𝑟 (𝑧)) ⊂ 𝑓 (𝐷).

If 𝑤 = ∞ and there exists 𝑧 ∈ 𝐷 \ {∞} with 𝑓 (𝑧) = 𝑤 we repeat the argument with the
nonconstant holomorphic function 1/ 𝑓 on an appropriate ball 𝐵𝑟 (𝑧). This yields there is
𝜀 > 0 such that for every 𝑦 ∈ 𝐵𝜀 (0) there exists 𝑧′ ∈ 𝐵𝑟 (𝑧) such that 1/ 𝑓 (𝑧′) = 𝑦. (Recall
that 1/∞ = 0.) Rearranging terms this yields Ĉ \ 𝐵̄𝜀 (0) ⊂ 𝑓 (𝐵𝑟 (𝑧)). The left-hand side
set is an open neighborhood of ∞.

If 𝑤 ∈ C and 𝑓 (∞) = 𝑤 we consider the holomorphic nonconstant assignment 𝑧 ↦→
𝑓 (1/𝑧) on 𝐵𝑟 (0), which is well-defined for 𝑟 > 0 small enough, since 𝐷 is open. Again we
deduce there exists 𝜀 > 0 such that 𝐵𝜀 (𝑤) ⊂ 𝑓 (𝐷).

In the remaining case 𝑤 = ∞ = 𝑓 (∞), we argue analogously by considering the
assignment 𝑧 ↦→ 1/ 𝑓 (1/𝑧).

In all four cases we conclude there exists a neighborhood 𝑁 ⊂ Ĉ of 𝑤 with the property
that 𝑁 ⊂ 𝑓 (𝐷). This concludes the proof.

Homework 10.3 (Extension of entire functions∗). In this exercise we show polynomials are
the only entire functions that can be extended to the Riemann sphere in a holomorphic way.

a. Let 𝑃 : C → C be a nonconstant polynomial. Show that setting 𝑃(∞) := ∞ defines
a holomorphic extension 𝑃 : Ĉ → Ĉ.

b. Show if 𝑓 : Ĉ → Ĉ is holomorphic and satisfies 𝑓 (C) ⊂ C then 𝑓 is a polynomial1.

Homework 10.4 (Holomorphic functions on the Riemann sphere are rational). Let the
function 𝑓 : Ĉ → Ĉ be holomorphic. Show 𝑓 is a rational function2, i.e. there are polynomials
𝑃,𝑄 : C → C such that for every 𝑧 ∈ C \ { 𝑓 = ∞},

𝑓 (𝑧) = 𝑃(𝑧)
𝑄(𝑧) .

1Hint. Consider the assignment 𝑧 ↦→ 𝑓 (1/𝑧) and its singularity at 0.
2Hint. You may need the following generalized Liouville theorem. If 𝑔 : C → C is holomorphic and there

exist 𝑅 > 0 and 𝑛 ∈ N such that |𝑔 (𝑧) | ≤ 𝑅 |𝑧 |𝑛 for every 𝑧 ∈ 𝐵̄𝑅 (0) , then 𝑔 is a polynomial no larger than 𝑛.
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Solution. If 𝑓 is constant, there is nothing to prove. Moreover, by Homework 10.3 we
may and will assume without loss of generality that 𝑓 (𝑧) = ∞ for some 𝑧 ∈ C. Since Ĉ is
compact, the identity theorem on Ĉ implies 𝑓 −1 (∞) ∩ C is a finite set {𝑎1, . . . , 𝑎𝑛}, where
𝑛 ∈ N. At each point 𝑎𝑖 the function 1/ 𝑓 has a zero of order 𝑘𝑖 ∈ N. This implies that the
function 𝑓 has pole of order 𝑘𝑖 in 𝑎𝑖 . Define the polynomial

𝑄(𝑧) :=
𝑛∏
𝑖=1

(𝑧 − 𝑎𝑖)𝑘𝑖 .

Then the product 𝑓 𝑄, defined on C \ {𝑎1, . . . , 𝑎𝑛}, is holomorphic and each singularity
is removable. Hence it can be extended to an entire function. If 𝑓 (∞) ∈ C, there exists
𝑅 > 0 such that | 𝑓 (𝑧) | ≤ 𝑅 for every 𝑧 ∈ C with |𝑧 | ≥ 𝑅. The generalized Liouville
theorem implies 𝑓 𝑄 is a polynomial. If 𝑓 (∞) = ∞ it follows that 𝑓 𝑄(∞) := ∞ defines
a holomorphic extension. Indeed, this is just a reformulation of the product rule since by
Homework 10.3 the polynomial 𝑄 is holomorphic at ∞ with value ∞. From Homework
10.3 we deduce again that 𝑓 𝑄 is a polynomial3.

3Remark. We distinguished the two cases 𝑓 (∞) = ∞ and 𝑓 (∞) ∈ C because 𝑓 (∞) = 0 possibly requires a
different extension. More generally, the product of two functions with values in Ĉ is not well-defined in general.


