TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 SOLUTION SKETCHES TO HOMEWORK 10

MATHIAS BRAUN AND WENHAO ZHAO

Homework 10.1 (Riemann sphere). The goal of this exercise is to introduce calculus "at infinity". We set $\widehat{\mathbf{C}} := \mathbf{C} \cup \{\infty\}$, where for the moment ∞ is an abstract element. We say a sequence $(z_n)_{n \in \mathbb{N}}$ in $\widehat{\mathbf{C}}$ converges to a point $z \in \widehat{\mathbf{C}}$ if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have

- $z_n = \infty$ or $z_n \in \mathbb{C}$ yet $|z_n| \ge 1/\varepsilon$ provided $z = \infty$ and
- $z_n \in \mathbb{C}$ and $|z_n z| \le \varepsilon$ provided $z \in \mathbb{C}$.

Moreover, let $S^2 := \{x \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$ be the usual two-dimensional unit sphere and define the stereographic projection $P \colon S^2 \to \widehat{\mathbb{C}}$ through

$$P(x) := \begin{cases} \frac{x_1}{1 - x_3} + i \frac{x_2}{1 - x_3} & \text{if } x_3 \neq 1, \\ \infty & \text{otherwise.} \end{cases}$$

- a. Show *P* is a homeomorphism (where continuity is tacitly understood as sequential continuity).
- b. Conclude $\widehat{\mathbf{C}}$ is sequentially compact.

Solution. a. We first show injectivity. Assume P(x) = P(y) for two given points $x, y \in S^2$, then either $P(x) = \infty$ so that x = y = (0, 0, 1) or

$$\frac{x_1}{1 - x_3} = \frac{y_1}{1 - y_3},$$
$$\frac{x_2}{1 - x_3} = \frac{y_2}{1 - y_3}.$$

Squaring both equalities, their sum yields

$$\frac{1-x_3^2}{(1-x_3)^2} = \frac{x_1^2 + x_2^2}{(1-x_3)^2} = \frac{y_1^2 + y_2^2}{(1-y_3)^2} = \frac{1-y_3^2}{(1-y_3^2)},$$

where we used $x_1^2 + x_2^2 + x_3^2 = 1$ and $y_1^2 + y_2^2 + y_3^2 = 1$. We can further simplify the terms on both sides to deduce

$$\frac{1+x_3}{1-x_3} = \frac{1+y_3}{1-y_3}.$$

Note the assignment $t \mapsto (1+t)(1-t)^{-1}$ is strictly increasing on (0,1). Hence, the above equality yields $x_3 = y_3$ and we conclude x = y.

We turn to surjectivity. It clearly suffices to find, given any $z \in \mathbb{C}$, a point $x \in \mathbb{S}^2$ with P(x) = z. Since $|P(x)|^2 = (1 + x_3)(1 - x_3)^{-1}$ we set $x_3 = (|z|^2 - 1)(1 + |z|^2)^{-1}$, so that $|x_3| < 1$. In conclusion we let

$$x_1 = \Re z \left[1 - \frac{|z|^2 - 1}{1 + |z|^2} \right] = \Re z \frac{2}{1 + |z|^2},$$

$$x_2 = \Im z \left[1 - \frac{|z|^2 - 1}{1 + |z|^2} \right] = \Im z \frac{2}{1 + |z|^2},$$

By a direct calculation, we find $x_1^2 + x_2^2 + x_3^2 = 1$ and P(x) = z.

In particular, the inverse of *P* is given by

$$P^{-1}(z) = \begin{cases} \frac{1}{1+|z|^2} (2\Re z, 2\Im z, |z|^2 - 1) & \text{if } z \in \mathbb{C}, \\ (0, 0, 1) & \text{if } z = \infty. \end{cases}$$

We next show P and P^{-1} are sequentially continuous. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{S}^2 converging to some $x\in \mathbb{S}^2$. If $x\neq (0,0,1)$ then clearly $P(x_n)\to P(x)$ as $n\to\infty$. If x=(0,0,1), we may and will assume without loss of generality that $x_n\neq x$ for every $n\in\mathbb{N}$. Then $|P(x_n)|\to\infty$ as $n\to\infty$, which shows $P(x_n)\to\infty$ as $n\to\infty$. Thus P is continuous. Conversely, let us assume $(z_n)_{n\in\mathbb{N}}$ is a sequence in $\widehat{\mathbb{C}}$ converging to a point $z\in\widehat{\mathbb{C}}$. If $z\in\mathbb{C}$ then again $P^{-1}(z_n)\to P^{-1}(z)$ as $n\to\infty$. If $z=\infty$ we may and will again assume $z_n\neq\infty$ for every $n\in\mathbb{N}$. Then by definition $|z_n|\to\infty$ as $n\to\infty$, which entails $P^{-1}(z_n)=(0,0,1)$ thanks to the inequality $|\Re z|, |\Im z|\leq |z|$ for every $z\in\mathbb{C}$.

b. In order to show sequential compactness, it suffices to note $\widehat{\mathbf{C}}$ is the image of the sequentially compact set \mathbf{S}^2 under the continuous function P.

Homework 10.2 (Open mapping theorem for the Riemann sphere). Let $\widehat{D} \subset \widehat{\mathbf{C}}$ be a domain and let $f \colon \widehat{D} \to \widehat{\mathbf{C}}$ be holomorphic and nonconstant. Show $f(\widehat{D})$ is again a domain.

Solution. Since f is continuous it follows $f(\widehat{D})$ is again a path-connected set. We claim it is an open set. Given $w \in f(\widehat{D})$, to find a neighborhood we distinguish several cases.

If $w \in \mathbb{C}$ and there exists $z \in \widehat{D} \setminus \{\infty\}$ with f(z) = w then by continuity there exists r > 0 such that $B_r(z) \subset \widehat{D}$ and $f(B_r(z)) \in \mathbb{C}$. By the identity theorem it follows that f is nonconstant on $B_r(z)$. Hence by the standard open mapping theorem there exists $\varepsilon > 0$ such that $B_{\varepsilon}(w) \subset f(B_r(z)) \subset f(\widehat{D})$.

If $w = \infty$ and there exists $z \in \widehat{D} \setminus \{\infty\}$ with f(z) = w we repeat the argument with the nonconstant holomorphic function 1/f on an appropriate ball $B_r(z)$. This yields there is $\varepsilon > 0$ such that for every $y \in B_{\varepsilon}(0)$ there exists $z' \in B_r(z)$ such that 1/f(z') = y. (Recall that $1/\infty = 0$.) Rearranging terms this yields $\widehat{\mathbf{C}} \setminus \overline{B}_{\varepsilon}(0) \subset f(B_r(z))$. The left-hand side set is an open neighborhood of ∞ .

If $w \in \mathbb{C}$ and $f(\infty) = w$ we consider the holomorphic nonconstant assignment $z \mapsto f(1/z)$ on $B_r(0)$, which is well-defined for r > 0 small enough, since \widehat{D} is open. Again we deduce there exists $\varepsilon > 0$ such that $B_{\varepsilon}(w) \subset f(\widehat{D})$.

In the remaining case $w = \infty = f(\infty)$, we argue analogously by considering the assignment $z \mapsto 1/f(1/z)$.

In all four cases we conclude there exists a neighborhood $N \subset \widehat{\mathbf{C}}$ of w with the property that $N \subset f(\widehat{D})$. This concludes the proof.

Homework 10.3 (Extension of entire functions*). In this exercise we show polynomials are the only entire functions that can be extended to the Riemann sphere in a holomorphic way.

- a. Let $P: \mathbb{C} \to \mathbb{C}$ be a nonconstant polynomial. Show that setting $P(\infty) := \infty$ defines a holomorphic extension $P: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$.
- b. Show if $f: \widehat{\mathbf{C}} \to \widehat{\mathbf{C}}$ is holomorphic and satisfies $f(\mathbf{C}) \subset \mathbf{C}$ then f is a polynomial.

Homework 10.4 (Holomorphic functions on the Riemann sphere are rational). Let the function $f: \widehat{\mathbf{C}} \to \widehat{\mathbf{C}}$ be holomorphic. Show f is a rational function², i.e. there are polynomials $P, Q: \mathbf{C} \to \mathbf{C}$ such that for every $z \in \mathbf{C} \setminus \{f = \infty\}$,

$$f(z) = \frac{P(z)}{Q(z)}.$$

¹**Hint.** Consider the assignment $z \mapsto f(1/z)$ and its singularity at 0.

²Hint. You may need the following generalized Liouville theorem. If $g: \mathbb{C} \to \mathbb{C}$ is holomorphic and there exist R > 0 and $n \in \mathbb{N}$ such that $|g(z)| \le R|z|^n$ for every $z \in \bar{B}_R(0)$, then g is a polynomial no larger than n.

Solution. If f is constant, there is nothing to prove. Moreover, by Homework 10.3 we may and will assume without loss of generality that $f(z) = \infty$ for some $z \in \mathbb{C}$. Since $\widehat{\mathbb{C}}$ is compact, the identity theorem on $\widehat{\mathbf{C}}$ implies $f^{-1}(\infty) \cap \mathbf{C}$ is a finite set $\{a_1, \ldots, a_n\}$, where $n \in \mathbb{N}$. At each point a_i the function 1/f has a zero of order $k_i \in \mathbb{N}$. This implies that the function f has pole of order k_i in a_i . Define the polynomial

$$Q(z) := \prod_{i=1}^{n} (z - a_i)^{k_i}.$$

 $Q(z):=\prod_{i=1}^n(z-a_i)^{k_i}.$ Then the product f Q, defined on $\mathbb{C}\setminus\{a_1,\ldots,a_n\}$, is holomorphic and each singularity is removable. Hence it can be extended to an entire function. If $f(\infty) \in \mathbb{C}$, there exists R > 0 such that $|f(z)| \le R$ for every $z \in \mathbb{C}$ with $|z| \ge R$. The generalized Liouville theorem implies f Q is a polynomial. If $f(\infty) = \infty$ it follows that $f Q(\infty) := \infty$ defines a holomorphic extension. Indeed, this is just a reformulation of the product rule since by Homework 10.3 the polynomial Q is holomorphic at ∞ with value ∞ . From Homework 10.3 we deduce again that fQ is a polynomial³.

³**Remark.** We distinguished the two cases $f(\infty) = \infty$ and $f(\infty) \in \mathbb{C}$ because $f(\infty) = 0$ possibly requires a different extension. More generally, the product of two functions with values in $\hat{\mathbf{C}}$ is not well-defined in general.